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*" ESTIMATION AND CONTROL OF ERROR BASED ON P-CONVERGENCE

SUMMARY

The relative error in energy can be estimated on the basis of the

asymptotic estimate of the rate of p-convergence. Nearly optimal control

of error can be achieved when feedback information, generated from

p-convergence data, is used for deciding whether the mesh should be

refined or the polynomial degree of elements increased. -. o-5)

" 1. INTRODUCTION

* In order to keep the discussion in focus, we shall be concerned

7. only with problems of plane elasticity and finite element models based

F on the displacement formulation. In a number of cases the domain has

reentrant corners or sudden changes occur in the boundary conditions.

• .- In the neighborhood of such points the exact solution is of the form:

. A. r F(6) ,  ai >0 ()
i=l

where u is the displacement vector, r and 6 are polar coordinates

centered on the point, a. are determined from the condition that theI 1

solution must satisfy the Navier-Lame equations and the boundary condi-

tions on the edges that meet at the corner [i]. For the purposes of the

I following discussion we shall assume that ai have been ordered such that

.' < a2 < a3 etc. F. are sinusoidal (vector) functions. A. are unknown
1 - 2- - 1

coefficients (amplitudes), closely related to the stress intensity

factors in linear elastic fracture mechanics. In fact, in linear elastic

* fracture mechanics al a A = I , A = KI/7 KI
2 , = and A1 K1  2  I K1,

K being, respectively, the Mode I, Mode II stress intensity factors.
II

* We shall be interested in the lowest value of ai., specifically a1 .

Some typical a I1 values that frequently occur in engineering practice are

shown in Fig. 1. When a is large, or when al. a 2 ,".. are integers, or

when the points of singularity lie outside of and far from the solution

domain then the solution is said to be smooth.

r.
V.

I " - - ' T - . ' ' ' -. ...-, - 2 " . " " ' '' . '' . - .' -" -. ' - + . ., . , • . . . . ' . ..
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Elastic Solid

n Free
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a, =o.544

Free

............................
....... 0 ...5

. ... Fig.0I

Fi.

Some avalues for isotropic elastic solids.

The finite element solution U!FE minimizes the potential energy

expression with respect to a set of functions that can be written in the

following form:

* '* N

i=l

where (D(xy are the basis functions, constructed from the element

shape functions in such a way that the appropriate continuity and boundary
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conditions are satisfied. The basis functions depend on the choice of

the finite element mesh for the solution domain, the shape functions

defined on the finite elements and the mapping of the elements:

x x(en), y = y(Q,n) (3)

where and n are the standard coordinates and (3) represents transforma-

tion of the standard element into the 'real' element. The element shape

functions are defined on the standard element. We shall be concerned

only with polynomial shape functions. Unless the transformation is

isoparametric or subparametric however, the mapped shape functions and

therefore the basis functions are not polynomials. The set of all

functions that can be written in the form of eq. (2) is called a finite

[r element space.

A particular choice of mesh and polynomial degree p may not yield

an approximate solution of sufficient precision. It is necessary there-

fore to have the ability to improve the quality of approximation. This

involves increasing the number of degrees of freedom. When the number

of degrees of freedom is increased in such a way that the finite element

spaces of fewer degrees of freedom are embedded in the finite element

spaces of greater number of degrees of freedom then the process of

increasing the degrees of freedom is called extension. The algorithm or

strategy by which the number of degrees of freedom is increased is

called extension operator.

Extension operators are classified into three major categories

called h-extension, p-extension, and h-p extension. When aspects of

implementation are emphasized then the word version rather than extension

is used. In the h-version the polynomial degree of the elements is

fixed, therefore extension is possible only by mesh refinement. The

size of the elements is usually denoted by h, hence the name: h-version.

In the p-version the polynomial degree of the elements may be varied

over a substantial range. Therefore extension is possible through

pincreasing the polynomial degree of elements. In the h-p extension the
L. number of degrees of freedom is increased by some combination of mesh

refinement and increase of polynomial degree.

........................ ........... .... ....-- °- +.°............... . .... ..- *..
-
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2. CONVERGENCE IN ENERGY NORM

Finite element solutions minimize the error in energy norm. There-

fore the magnitude of the error in energy norm is a good measure of the

overall quality of approximation. Asymptotic error estimates are avail-

able for the three methods of extension. Following is a brief summary:

In the h-extension when a sequence of meshes is obtained through

uniform refinement then the estimate of error is:

kI

lel E - N1/2 min(p,c) (4)

where jej 1E is the error in energy norm (i.e. the square root of the

strain energy of the error); N is the number of degrees of freedom; p is

the polynomial degree of elements and a measures the smoothness of the

exact solution. Specifically, in the problems considered herein, a is

the smallest exponent of r in eq. (1), i.e. a = ai"' The exponent of N

is called the asymptotic rate of convergence.

When the sequence of meshes is obtained in such a way that the

error associated with each element is approximately the same then the

meshes are called equilibrated meshes and the estimate is:

k2

IlellE < 2(5)
NP/2(5

Note that the rate of convergence is independent of a and can be made

arbitrarily large by choosing sufficiently large p.

In p-extension the mesh is fixed and the polynomial degree of

elements is increased. In this case, when the point of singularity is

located at a nodal point, the estimate is:

1lej (6)
eIIE -_ N (6

, -. .'. ." . . " '.' - . U-- % -" % =. .- .. . -.. . ... .. . . -. . . . . , .- .-
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Note that the rate of convergence is exactly twice the rate of convergence

of the h-extension based on uniform mesh refinement.

In the h-p extension optimal mesh refinement is coupled with optimal

p-distribution and the estimate is

kjjF< 4 (7)

exp (yN )

where y, 6 are constants, 0 > 1/3. In this case the asymptotic rate of

convergence is exponential.

Some of these results are illustrated graphically in Fig. 2. 
The

relative errors shown in Fig. 2 are typical values.

100
COARSE MESH, paI or P-2

h - extension, uniform -50
mesh refinement

I2/ min (p,)- 20

4-0

a.

h- p xtenion -,-+0 O5 CC 2 -

0

0 p- extension, 
a:

s ungraded mesh 2 UJ

OI 4h - p extension -0.5
(Also: P -extension
for smooth solutions)

p-extension, -0.2
strongly graded mesh

0.I
LOG N

Fig. 2

Performance of the h-, p- and h-p extension processes.

(The relative error values shown are typical for certain engineering problems).
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The asymptotic rate of convergence of p-extensions was discussed in

a number of papers and several examples were presented [2-7]. In [3] a

rigorous proof of eq. (6) was given. In the examples the meshes were

usually designed in such a way that the minimum number of elements

needed for representing the domain were used. An important exception

was a demonstration of the h-p extension in [4).

In this paper it will be shown that: (1) the exponential rate of

convergence is in fact realized in the case of problems with smooth

solutions when the p-extension is used; (2) Problems with stress singu-

larities can be made to behave almost as problems with smooth solutions

do when properly graded meshes are used in conjunction with the p-extension

and (3) the relative error in energy norm can be estimated on the basis

of the asymptotic estimate for the p-extension, eq. (6).



-7-

3. PROBLEMS WITH SMOOTH SOLUTIONS

3.1 Thick walled cylinder under internal pressure.

Let us first consider a thick walled cylinder under internal pressure.

In this case the classical solution is known. (See, for example, [8]).

Assuming plane strain conditions and Poisson's ratio of 0.3, the strain

energy U for a 45 degree sector, as shown in Fig. 3, is 0.748746249 p2 ri2/E

per unit length of the cylinder, given of course that ro/r i = 2.

E is the modulus of elasticity.

The relative error in energy norm is:

U-U
(er)E =4U T (8)

where: U exact strain energy

U computed strain energy, polynomial degree p.

.............. .....

.....................

PP

1.0..

r o= 2.o0

Fig. 3

45 degree sector of a thick walled
cylinder under internal pressure.
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Using a single quadrilateral element, mapped by linear blending so that

the annular sector is represented exactly, (e r)E was computed for

p = 1,2,...8. The results are shown in Figs. 4 and 5. In Fig. 4 the

relative error is plotted against the number of degrees of freedcn, N,

on log-log scale. It is seen that the slope of the curve increases with

N. This is consistent with the qualitative illustration of convergence

in Fig. 2. In Fig. 5 the relative error is plotted against the number

of degrees of freedom on semi-log scale. In this case the slope of the

relative error approaches a constant value, indicating that the rate of

convergence is nearly exponential.

Note that p = 4 is more than sufficient for engineering accuracy

for this problem.

1.0

o loZIal

0

z 10.  2

Cr -2
W 1
z

W

> -5

3.0 10.0 I00.0
NUMBER OF DEGREES OF FREEDOM

Fig. 4

45 degree sector of a thick walled cylinder under internal pressure.
Relative error in energy norm plotted against N on log-log scale.
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1.0

pal
z 1

(3 3

W 1-2

z -5
-LJ

0 20 40 0 80
NUMBER OF EGREES OFREEDOM

Fig. 5

45 degree sector of a thick walled cylinder under internal pressure.
Relative error in energy norm plotted against N on semi-log scale.

3.2 Circular hole in a rectangular panel

Let us next consider the well known problem of a circular hole in a

rectangular panel subjected to uniaxial tension. See, for example [9].

Because the solution of this problem is smooth (no reentrant corners are

present and no sudden changes in material properties or loading conditions

occur) the minimum number of elements needed for representing the geometry

is the best choice for the p-version. In the h-version the error is con-

trolled by mesh refinement. A typical h-version mesh (produced by a

practicing engineer) and the p-version mesh are shown in Fig. 6. Of

interest is the maximum stress. The maximum stress, computed directly

from the finite element solution using the three element mesh with the

polynomial degree ranging from 1 to 8 and -1 = 0.5, is shown in Fig. 7.
w
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6. SUMMARY AND CONCLUSIONS

When properly graded meshes are used then the performance of the

p-extension in the pre-asymptotic range is very close to the best per-

formance attainable by sequences of optimal meshes coupled with sequences

of optimal p-distributions.

The p-extension process provides means for estimating the relative

error in energy norm. It also provides information on the basis of

which it is possible to decide whether the mesh should be refined or the

polynomial degree of elements should be increased.

When the exact solution is smooth then the coarsest possible mesh

should be used. In this case mesh design is controlled entirely by the

geometry of the domain. The only restriction on the mesh is that the

mapping of the elements must be smooth also, therefore large aspect

ratios must be avoided. In the p-extensions aspect ratios as large as 20:1

are permissible, however.

When the exact solution is not smooth, for example corner singular-

ities are present, then the points of singularity must be isolated by

one or more layers of small elements. Grading of the elements should be

such that the element sizes are in geometric progression with the smallest

element(s) at the point of singularity. The geometric progression

should have a common factor of about 0.15. In this case entry into the

asymptotic range is shifted toward higher p-values and the pre-asymptotic

convergence of the p-extension process is much stronger than asymptotic.

When the mesh is properly designed then the finite element solution

behaves almost as if the exact solution were smooth.

In general, overrefinement in the neighborhood of singular points

is preferable to underrefinement.

Proper mesh design is highly beneficial from the point of view of

stress computations: The oscillatory behavior of stresses can be attenuated

to such an extent that, with the exception of the immediate neighborhood of

singular points, the error is very small everywhere.

%i. . . . . . . . . . ..'. ...- .'.' ". .' --.. ". .".. . . . . . ..-. ...." ,...-.". . ..--. ...- -';.' ,--. -. .-.. 7.i. 5,.-' '[,-..~
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TABLE IV

Estimated and true error in energy norm.
Cracked panel, Mesh B.

UE2..P--
N K a Percent Rel. Error

__R I 8 Est.'d True

1 27 0.207859 - - 35.10
2 78 0.233048 - - 13.02
3 137 0.236076 1.71 8.89 6.46
4 220 0.236739 2.55 3.46 3.71
5 327 0.236895 2.87 1.76 2.68

6 458 0.236953 2.22 1.48 2.17

7 613 0.236983 1.66 1.42 1.86

8 792 0.237001 1.26 1.43 1.64

Note that the preasymptotic range is extended when Mesh B is used.

Systematic application of the procedure just described is the

'feedback h-p extension' in the terminology of reference [12].

* .r1 A~ k..~ - ,..~..?.S.... i
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It is seen that a is monotonically.increasing. Although the

relative errors in energy norm are very small, the estimated and true

errors are close.

5.2 Cracked panel

We first tabulate the convergence data for Mesh A (see Table III).

The observed rate of convergence (B) is clearly stronger than the

asymptotic rate (2ci1 = 1) up to p = 6. For higher p values the rate

of convergence becomes weaker and approaches the asymptotic rate. Note

also that the estimated and true error values are reasonably close.

At p = 8 the relative error in energy norm is 4.22 percent relative

error in strain energy. From the practical point of view this level of

precision is usually more than sufficient. For example, the relative

error in the stress intensity factor K1, computed from the strain energy

release rate at p = 8, is only 0.38 percent. Nevertheless, if greater

TABLE III

Estimated and true error in energy norm.
Cracked panel, Mesh A.

U E
p.~

NK2 Percent Rel. Error
21 I BEst.'d True

1 18 0.201706 -- 38.62
2 52 0.229199 -- 18.21
3 94 0.234117 1.31 13.38 11.15
4 152 0.235489 1.96 6.11 8.15
5 226 0.236053 1.57 5.26 6.53
6 316 0.236346 1.33 4.70 5.51
7 422 0.236525 1.10 4.49 4.77
8 544 0.236643 1.02 4.11 4.22

precision is needed, then the mesh should be refined using the geometric

progression rule. Repeating the procedure for Mesh B shown in Fig. 11,

the results shown in Table IV were obtained.
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the h-extension process. In fact, the relative error for the cantilever

problem shown in Fig. 10 was estimated in this way. When p-extension is

used then 8 = 2ax When h-extension is used with uniform mesh refinements

then 8 = min(cl,p).

Referring to Fig. 2, we note that when the mesh is well designed

then the extension is not in the asymptotic range. Therefore the meshes

should be designed in such a way that the asymptotic range is not entered

when the polynomial degree is increased. Ideally, the mesh should be

designed so as to cause 8 to increase with N. When three successive

finite element solutions are available in the extension process, i.e.
U, and Np, , are known, then we can estimate 8 bypUp1, U 2  Np 1, Np-2

assuming C to be constant and solving the following equation for 8:

U - U U -

p-i = p-1 - p-2 
(14)

N - N N- - N-
p-1 p p-2  p-1

If we find that 8 is not increasing with p and the error is still large

then those elements that have vertices on the singular point should be

refined, using the geometric progression rule for refinement. The

procedure is illustrated on the basis of two problems: one has a very

smooth solution, the other is characterized by a strong stress singularity.

5.1 Thick walled cylinder under internal pressure.

The problem was solved with a single finite element which is shown

in Fig. 3. The convergence data are listed in Table II.

TABLE II

Estimated and true error in energy norm.
Thick walled cylinder under internal pressure.

UE
2 2Percent Rel. Error

N 2 2
_N 8 Est.'d True

1 4 0.6539035818 - 35.5905
2 10 0.7421867856 - 9.3598
3 16 0.7483608276 2.6312 5.8098 2.2688
4 24 0.7487274398 5.9418 0.6954 0.5012
5 34 0.7487454062 7.3680 0.1413 0.1061
6 46 0.7487462140 8.8350 0.0283 0.0217
7 60 0.7487462477 10.4389 0.0055 0.0043
8 76 0.7487462491 12.0693 0.0010 0.0008
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5. ESTIMATES OF ERROR IN ENERGY NORM

The p-extension process can be used for obtaining valuable (feedback)

information concerning the overall quality of approximation. On the

basis of this information it is possible to estimate the relative error

in energy norm and decide whether it is better to refine the mesh or

increase the polynomial degree of elements.

The asymptotic estimates of error in energy norm were reviewed in

Section 2. Equivalently, the error in strain energy can be written as:

lu-UpI < CN 8  (10)
P p

where U is the exact strain energy, U is the computed strain energy, NP P

is the corresponding number of degrees of freedom, subscript p represents

the polynomial degree of elements, C is a positive constant and 8 is the

rate of convergence. In the case of homogeneous kinematic boundary

conditions U > U and we can write:
p

U-U < CN-8 .  (11)
p- p

When the finite element solution is in the asymptotic range and 8 is

known then we can readily compute C from:

c U -UP- (12)
Np8  - N-8

-l p

and therefore U can be estimated from:

U N8 - U piN8
U P1 p -= . (13)

p p-1

Although the exact solution is not known, the strain energy of the exact

solution can be estimated with great precision through either the p- or
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* Since the exact solution is known, we are in position to examine the

accuracy of stress computations. We have computed the stresses at

x = 0.25a y =0.25a (See Fig. 11). Because this point lies at the

boundary of two elements, we obtain two sets of stress values, depending

on which element is used for the stress computations. We refer the

element with vertices at (0,0), (a,a) (0,a) as element 1, the element

- with vertices at (0,0) (a,0), (a,a) as element 2. The computed a
y

values for both elements, together with the corresponding relative

errors, are shown in Table 1. Note that the error is very small for a

* wide range of p-values.

TABLE I

Stress a ycomputed at x = 0.25a, y =0.25a,

Uusing Mesh A. The exact value of a yis: 0.8390 K 11,53

Element 1 Element 2

. yNJa*YK1  Rel. Err. a(%)a Rel. Err.()

1 0.7891 5.95 0.5804 30.8
*2 0.7336 12.6 0.7516 10.4

3 0.8355 0.42 0.8510 1.43
4 0.8456 0.79 0.8411 0.25
5 0.8402 0.14 0.8407 0.20

P6 0.8359 0.37 0.8383 0.08
*7 0.8352 0.45 0.8362 0.33

8 0.8359 0.37 0.8361 0.35

Alternative means of stress computation are available [10,11]. The

* results shown here indicate however that direct computation of stresses

* from finite element solutions is adequate for practical purposes when

the mesh is properly designed. This is especially important in the case

of design computations where the overall behavior of the solution is of

* interest. The extraction techniques presented in [10,11] and investigated

in [6,7] are of great practical importance when the solution in the

immediate neighborhood of a stress singularity is of interest.
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K-i + sin sin fJ -T < e <W (9b)

K1"KI e e 3e 7<6< T 9
" - n sin 2 cos I cos -2 , -T < 0 < n. (9c)

Therefore the exact solution is known and the strain energy can be
2

computed. It is 0.23706469 K Ia/E for the half panel. (Due to symmetry,I

only half of the panel has to be analyzed).

The p-convergence paths for Meshes A and B are shown in Fig. 12.

Note that the convergence path corresponding to Mesh B is very similar

to the qualitative behavior shown in Fig. 2 for strongly graded meshes.

I .O
.00

0
! - - P.,

W 2z
~0.10 A
W 2uI 3 Mesh A

W 7
LL)

0.01 *..l p p i I ,,I , ,, ,,

NUMBER OF DEGREES OF FREEDOM
•Fig. 12

Cracked panel. Performance of the p-extension

when strongly graded meshes are used.

.** .. * * I. . -
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in the number of degrees of freedom when two elements are added is not

substantial (Fig. 10). Similarly, the use of graded p-distribution,

i.e. assigning low polynomial degrees to the small elements at the

singularities and high polynomial degrees to the large elements away

from the singularities, as in the h-p extension, would not produce

appreciable savings in practical computations.

"- 4.2 Cracked Panel

Let us now consider the cracked panel shown in Fig. 11.

FY

,0

0.5

200

MESH A MESH B

Fig. 11

Cracked panel.

We assume plane strain conditions, Poisson's ratio of 0.3, and unit

thickness and load the panel in such a way that the tractions exactly

correspond to the well known first term of the asymptotic expansion for

Mode I, i.e.:

KIc [ i s 3e
a 2- cos - [1 -sin 1 sin-1-<e< (9a)

x -22

• - -"- ' -' r .,.. ' .' .. -, ' .,. ., -.t .' ' -- - .' , '.'. - .- '.'." -, . -. -.'. , .. - -.-. . . '""- .T"""".r.
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The rates of convergence in energy norm are shown in Fig. 10 for

*the h-extension with uniform mesh refinement (p=1), and the p-extension

for three different mesh layouts. It is seen that the theoretically

* predicted rate is realized in the case of both the h- and p-versions

• when the mesh is uniform, i.e. Mesh A is used. In either case it is

impractical to achieve 1 percent relative error in energy norm. The

rate of convergence is so small that the h- and p-extension processes

do not provide effective control of error in this norm. On the other

* hand, the convergence of the p-extension process is very strong when

strongly graded meshes are used. Mesh B5 is a five-element mesh, shown

• [in Fig. 9, Mesh B7 is a seven-element mesh, the grading of the elements

is in geometric progression toward the singularities, the common factor

being 0.1. The strong convergence obtained with these meshes seemingly

contradicts the theoretically predicted rate of eq. (6). This can be

explained as follows: The estimates given by eqs. (4) to (7) are

asymptotic estimates, hence they are valid only for 'large' N values.

The size of N for the estimates to hold depends on the mesh design.

I nWhen the elements at singular points are large then the error of approxi-

mation is controlled by the error associated with these elements and N

does not have to be very large for the asymptotic estimates to govern.

When the elements at the singular points are small, as in the case of

OP Mesh B5, the error associated with the larger elements away from the

singularity, where the solution is smooth, is the controlling factor.

*- Consequently the finite element solution behaves as if the exact

solution were smooth. Entry into the asymptotic range occurs only

when the polynomial degree is sufficiently high so that the elements

at singular points begin to control the error of approximation. The

validity of this explanation is confirmed by the results obtained with

Mesh B7: Refinement at the singularity does not significantly reduce

the error. In fact, for low p-values it is more efficient to use

Mesh B5 than Mesh B7. The cross-over occurs at about p = 5.

The strong preasymptotic behavior of the p-extension associated

-with Meshes B5, B7 is similar to the asymptotic behavior of problems

with smooth solutions.

Note that overrefinement (Mesh B7) is not detrimental from the

point of view of roundoff error and is not very wasteful. The increase

, .. ..... .. .... .. :.. - .. ... °- .-.-.-... .~j2~. * .-: . . .
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10.01

x2  q=I x2  B7
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eq 1
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Fig. 9

r Short cantilever beam.

NUMBER OF DEGREES OF FREEDOM
5 10 50 100 250 500 1000 2500 5000 10000
I I I I I I I I I I

P3 h / 60-0 2 - p =1 /4 -4 5 0
540[ =0.711 40 -.

-0.50--2 030.30"

* -0.75 p-elension MH h- extension, unifOrm 20
(h : /2)" refihement of MESH A M.

" MESH 85 ;% (p= 1)

w C
. -. 00 3" 10 0

'," :)MESH 87 6 h2 --,1 /9O w

o"1.25 4 4

-1.50 5"
0.711 h

-. 75"

-2.00 \= z7
'= 23

I I I I I I I

1.00 1.50 2.00 2.50 3.00 3.50 4.00
LOG N

Fig. 10

Short cantilever beam.
Performance of the h- and p-extensions.
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4. PROBLEMS WITH STRESS SINGULARITIES

P When the minimum number of elements is used and stress singularities

are present (i.e. the form of the exact solution at one or more points

is that of eq. (1) with aless than one) then entry into the asymptotic

range occurs at low p-values, usually p = 3 or p = 4, and the stress

pe field exhibits strong oscillatory behavior. This oscillatory behavior

is closely related to the smoothness of the exact solution: The smoother

* the exact solution, the less pronounced are the oscillations. These

* oscillations are beneficial in the sense that the faster rate of con-

vergence of the p-extension in energy (as compared with the h-extension

* based on uniform meshes) is owed to the property of polynomials that

they are able to oscillate with increased frequency as the polynomial

degree is increased and the wavelength of oscillations decreases with

distance measured from element boundaries. On the other hand, stress

* oscillations are confusing when stresses are of primary interest.

Numerical experiments have shown, however, that the boundaries of finite

elements attenuate stress oscillations. The attenuation is so substantial

that with proper mesh design the error in stress maxima, outside of the

immediate neighborhood of stress singularities, can be reduced to under

* 1 percent for all stress analysis problems of practical importance.

In the h-p extension the meshes are strongly graded toward the

* singularity; the element sizes are reduced in geometric progression with

a common factor of about 0.15 and the polynomial degrees of elements are

- assigned such that the smallest element has the lowest polynomial

degree, the largest element the highest. Nearly as good performance can

- be achieved when the elements are strongly graded toward the singularity

but the distribution of polynomial degrees is uniform. In the following

we demonstrate the performance of the p-extension on the basis of two

examples.

* 4.1 Short Cantilever Beam

The geometric definition of the problem and the meshes used ir our

analysis are shown in Fig. 9. Plane strain conditions and Poisson's

ratio of 0.3 are assumed.



t V.

It is seen that there are minor oscillations in the computed stresses

but for p 4 to 8 the stress value is well within the 5 percent relative

error range. For p = 8 the finite element solution is identical with

the solution presented in [9]. More importantly, the extension process

confirms the fact that convergence has occurred. The variation in

stresses is 0.3 percent in the range of p = 6,7,8. Given the fact that

the solution is smooth and therefore convergence (in energy) is strong,

one can reasonably estimate that the relative error is under 1 percent.

-. The fact that the p-version tolerates large aspect ratios is illus-

trated in Fig. 8. Using the same three element mesh as shown in Fig. 6,

the stress concentration factor was computed for a wide range of r/w

* ratios. It is seen that substantial deviation from the theoretical

value occurs only at very large and very small r/w ratios. The aspect

ratios of the finite elements are very large in those cases, however.
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Quarter model of a rectangular panel with a circular hole.
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